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N A T U R A L  C O N V E C T I O N  O F  T H E  E A R T H  L I Q U I D  

C O R E  I N  T H E  P R E S E N C E  O F  I N T E R N A L  H E A T  

S O U R C E S  

S. V. Solov'ev UDC 536.25 

Resul ts  o f  natural-convection heat transfer in the earth liquid core in the presence o f  internal sources  are 

presented. Consideration is given to boundary conditions o f  the 1, II, and I I I  k ind for  the temperature. The  

effect o f  internal heat sources on the hydrodynamics  and heat transfer o f  the core is studied. 

The modern theory of the geomagnetic field assumes that continuous migration of substance takes place 

in the earth liquid core [1 ]. At present, there is no doubt that thermal convection in the earth core is the very 

reason that causes the formation of the geomagnetic field [2 ]. The theory of the geomagnetic field has acquired 

the name geomagnetic dynamo (GD). Mathematical interpretation of the theory of vortical motion in the core and 

the appearance of induced currents in it is extremely difficult and has not been solved as yet [1 ]. Therefore, the 

theory of GD is being developed mainly by studying kinematic models where the velocity of the liquid flow is taken 

to be set and only the magnetic field is determined [3 ]. This approach can be compared with the electrodynamics 

of weak fields [3 ]. By virtue of this the study of the hydrodynamics of the earth liquid core with natural-convection 

heat transfer without regard for magnetic forces is of independent interest. 

With the aforesaid in mind, in the present paper we study natural-convection heat transfer in the presence 

of internal heat sources in the earth liquid core, which is considered to be a dielectric non-Newtonian fluid. The 
Boussinesq approximation is used. Free-fall acceleration is directed toward the core center. The liquid core is 

considered to be a spherical layer between the inner solid core of the earth and the boundary zone of the mantle 

with a liquid core [4 ]. 

In the present paper problems of the convective stability of a liquid in a spherical cavity were not analyzed 

because this problem represents a separate study. Fundamentally this problem was studied in [5-9 ]. 

The mathematical model of natural-convection heat transfer in the earth liquid core in a spherical system 

of coordinates with account for the symmetry along the longitude (the Coriolis force is disregarded) is described 

by the following dimensionless equations: 

1 O0 1 Qv 
S-h- O--r- + (VV) 0 = ~e  AO + p---~-, (1) 

1 0 V  

Sh 0T 
- - - - +  (VV) V = -  E u V P + - -  

1 Gr 
A V  + - -  ( 2 )  

Re ~, Re 2 0 ,  

div V = 0.  (3) 

The geometry of the computational region is given in Fig. 1. 

The following notation is used in system (1)-(3): ~, is a unit vector directed to the center of the earth; ~9, 

V = V/uo,  T = t / t  o are the dimensionless temperature, velocity, and time; Eu = Po/Po u2 is the Euler number; Re 
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Fig. 1. Computational region. 
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= uor~/v  is the Reynolds  number;  Pe -- uor ~ / a  is the Peclet number;  Sh -- uo to / r  ~ is the Strouhal number ;  Gr,  Qv 

are the Grashof  number  and the dimensionless internal  heat source; r --- r' /r~ is the dimensionless radius;  r ' ,  r] 

are the dimensional  current  radius and the radius of the inner sphere. 

Problem (1)-(3) was solved in the variables of tempera ture-vor tex-s t ream function. For  this purpose the 

operat ion rot was applied to both parts of Eq. (2): 

1 rot O__y_V + rot (VV) V = - Eu rot VP + 1 rot AV + G--z-r rot 70.  
Sh aT Re Re 2 

(4) 

If new variables - vortex strength W = rot V and stream function W - are  introduced: 

1 Oq I 
v , -  2 .  - - ,  Vo= 

r sin 0 O0 

1 0 W  

r sin 0 Or 

then in the new variables the system of equations (1-(3) acquires the following form: 

Sh Or r sin 0 Or Or 

( Or-  I r  2020 ctan02 O0 ) 1 + 2 o0 + + + 

Pe r Or 002 r O0 
(5) 

1 0a)  
- - - -  d W - -  

Sh Or 

Re [ Or 2 

21 OW O~o O~ O~o co 0q ~ + o2 ctan 0 = 

r s i n 0  Or Or O0 r O0 Or 

20co 102o2 c t an00co  co ] Gr  1 0 0  
+ - - - +  r--2 - +  ~ r 2 2 oj r Or 002 r O0 sin Re 2 r 00 

(6) 

02q j + 102 t t  / ctan 0 0 q  j 
- -  co r sin 0 .  (7) 
Or 2 2 2 r 002 r O0 

Here co is the component  of the vector of vortex strength along the longitude ,p. 

To solve boundary-value  problem (5)-(7) ,  zero values of the stream function, the vortex s trength,  and the 

tempera ture  or a s ta t ionary temperature  distribution (with and without a heat source) for the case of pure heal 

conduction were assigned as initial conditions. 

In the present  paper boundary  conditions of the I, II, and III kind were considered.  
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B o u n d a r y  condi t ions  o f  the I k ind:  

011`1 = 1 , 011`2 = O .  

Here  0 = ( T  - T 2 ) / ( T  1 - T2); Gr  = gfl(T1 - T2)r~3/v2; Qv = qvr~2/,~(Tl - T2), wherc/ l  is the coefficient of thermal  

conductivity of the earth core; qv is the internal  heat  source. 

B o u n d a r y  cond i t ions  o f  the 11 kind.  A heat source q is assigned by the Fourier  law on t h e  inner  boundary  

of the core, and the temperature  is prescribed on the outer  boundary  (or conversely):  

00][ = 1, Olr 2=0. 
On FI 

Here  0 = ( T  - T2)A/(qr~);  Gr = gflqr~4/v22; Qv = q v r l / q .  

B o u n d a r y  condi t ions  o f  the 111 kind.  At the boundaries of the core heat t ransfer  occurs according to the 

N e w t o n - R i c h m a n  law 

Bil01rl  = -~n  1̀ 1 ~n  1`2 

Here  Bil, Bi2 are the known Biot numbers  

= Bi 2 (1 - 01.2). 

a k r 1 
Bik = - - - ~ - ,  k =  1 , 2 ;  

3 ,2 
0 = T l iq l  - -  T . Gr = - gflr] ( T l i q l  - Tl iq2  ) qv rl 

' 2 ; Qv = -  ; 
Tl iq l  - T l iq2  v ~. ( T l i q l  - T l iq2  ) 

T l iq l  , Tliq2 are the known dimensional temperatures  of the liquid that washes the core boundary  I'1 (from inside) 

and /'2 (from outside) ,  respectively; a l ,  ct 2 are the coefficients of heat  t ransfer  from the side of the liquid that  

washes the boundar ies / '1  a n d / ' 2 ,  respectively. 

It should be noted that a combination of the boundary  conditions for tempera ture  is possible. 

For  the equation of energy on the axis of symmetry  the derivative of tempera ture  became zero: 

---~l = 0 .  O00=O,n 

The  boundary  conditions for the stream function are the following: 

ku[rl ,2 Or F1,2  
= 0 ;  

O Z ~  
u2 { o=o,= O0 z O=O,n 

= 0 .  

The  boundary  conditions for the vortex strength on the walls suggest a linear variation of ~o along the 

normal. The  boundary  condition for o) on the axis of symmetry  is taken from [10 ]. 

To evaluate the intensity of natural convection in the earth liquid core the local and averaged Nusselt  

numbers  were calculated. 

The  local Nusselt  numbers on the surfaces of the inner and outer  spheres were calculated by the formulas 

00 
N u  I = - -  

Or 

;2 oo[ 
Nu 2 = - (8) 

F 1 ' r' 1 Or [ F  2 

Then they were averaged on the boundaries l ' l ,  I'2: 
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l x 1 ~ 
Nu I = ~- f Nu I sin OdO ; ~uu 2 = -~ Nu 2 sin OdO. (9) 

o o 

T h e  averaged Nusselt  numbers  were tested in the mode of pure heat conduction; for this purpose the 

equation 

2 r2 
r dr  

+ Q v = O ,  

the general  solution of which has the form 

O +  Qv r 2 / 6  - A / r  + B = O 

was considered.  The  constants  A and B were determined from the corresponding boundary  conditions. Then ,  the 

averaged Nusselt  numbers  were calculated by formulas (8) and (9). Then  relations that the averaged Nusselt  

numbers Nu I and Nu 2 should satisfy were obtained by the equation of heat balance. These  relations are presented 

in what follows: 

boundary  conditions of the I kind on both boundaries Fl ,  /'2: 

0 l q  = 1,  O I r  2 = O, 

Q" (n  o - 1) 
O~, 1 - -~- Ro 

N-~ 1 - 3  + R 0 - 1 
D 

Qv (R 2 _ l)  
1 -  7 - Nu2 Ov 2 

-5 -no  + R o -- 1 

, R 0 = r '2/r ' l ,  (10) 

,2 
qv rl 

Nu 1 = R o N u  2 at Q v - a ( T  I _ T2 ) 

boundary  conditions of the II and I kind: 

[ Nul _ I 

N--'-~2 R 0 

Nu I = R 0 Nu 2 

boundary  conditions of the I and III kind: 

OIV 1 = O, 

= 1 ,  t~]r 2 = 0 ,  

) 1 

3 

= 0 ;  

at Qv qv r l / q  = 0 ; 

F 2 
= Bi 2(1 -011 .2  ) ,  

( l l )  

(12) 
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Nu 1 

Nu 2 

I Qvl 2 1 + ~  1 - R  o -  Bi 2 )  
Ro 

R o - 1 + 1 / R  o Bi 2 
G, + - -  
3 

1 + I 2 1 - R o - Bi 2 ) R o - 1 + 1 / R  o Bi 2 

2 ~ 
Qv Ro + - -  

3 

(13) 

Nu I = R 0 Nu 2 at 

,2 
qv rl 

Qv (T  1 - Tliq2 ) 
= 0 ;  

boundary  conditions of the III and I kind 

Bi 1 0 [ r l  = r l  0 I t2 I 

Nu I 

Nu 2 

Ro 

( l / B i l )  R o + R o - 1 
+ Q__x~ 

3 

1 +-'~-- 1 - R  o -  
(1 /B i  0 R  o + R  o -  1 

2 ' 

Qv RO + - -  
3 

,2 
- -  qv rl 

Nu 1 = R 0 Nu 2 at Qv = 2 = 0 .  (14) 
(Zliql T2) 

The  system of differential equations (5)-(7) was solved numerical ly by the method of control volume (the 

algorithm SIMPLE was used) [11 ]. 

After integrat ion of Eqs. (5)-(7) by a control volume their  discrete analogs, which were solved by the 

G a u s s - Z e i d e l  i teration method with lower relaxation,  were obtained.  

T h e  t empera tu re  fields, s t ream functions,  and local and  averaged Nussel t  numbers  were found  from 

numerical calculations. The  following s teady-s ta te  modes of flow and heat t ransfer  were considered:  Re = Pe -- 1; 

G r / R e  2 - 103; Ra = G r P r - -  103 [1, 2, 4 ]. The  ratio of the outer  radius of the core r~ to the inner  r] varied within 

the range 2 /1 ;  3 /1 .  Results for the ratio r'2/r ~ = 2/1  are given in Figs. 2-4. 

Figure 2 presents  calculated fields for boundary  conditions of the I kind. In the core heat was t ransfer red  

by heat conduction. The  Rayleigh number  Ra -- 1000. The tempera ture  field for all three modes  (Qv /Pe  -- 0, 1, 2) 

makes  up concent r ic  circles crowding at the inner  b o u n d a r y  of the core  (Fig. 2a, A for  Q v / P e  = 0, h e r e  

Nul > Nu2, the tempera ture  distribution over the core thickness is represented  by curve 1 in Fig. 2a, C) and 

crowding at its outer  boundary  for Q v / P e  = 1, 2 (here Nu2 > NUl, the tempera ture  variation over the layer  

thickness is represented  by curve 2 for Qv /Pe  -- 1 and curve 3 for Q v / P e  = 2 in Fig. 2a, C). Although a four-cell  

flow takes place in the core for all the modes (Fig. 2a, B), its intensi ty is virtually insignificant,  and the maximum 

value of the s t ream function Itttmaxl is of the order  of 10 -14, 10 -15. At Q v / P e  = 1, Iqtmax I = 1.44" 10 -14, ~uu I = 

1.323, Nu2 -- 1.829, and at Q v / P e  = 2, I~ttmax I = 2.23" 10 -14, Nul = 0.666, ~u 2  = 2.662. For  the results in Fig. 

2a, the local and averaged Nusselt  numbers  coincide. The  latter obtained in a numerical  solution of the problem, 

satisfy relations (11), (10) for the corressponding modes (Qv = 0 and Qv ~ 0) with an absolute error  of 10 -2. 

Figure 2b presents calculated fields for the Rayleigh number  Ra = 3000 in the absence of an internal  heat 

source. As is seen from the figure, in this mode heat is t ransferred by convection. Th e  tempera ture  field in the 

layer  and the tempera ture  distribution over the layer  thickness acquire a pronounced character  for developed 

convection. The  intensi ty of motion and heat t ransfer  inci-eases; this is indicated by the increase in the s t ream 

function (IqJmax I = 3.29) and the averaged Nussell numbers (NUl = 2.924; Nu2 = 1.478). Thermal  boundary  layers 
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( b o u n d a r y  cond i t i ons  of the  I k ind) :  a) A, Fig. 2. C a l c u l a t e d  f ie lds  

tempera ture  field; B, stream function; C, temperature  distribution ~ over the 

core thickness;  the parameters:  Ra -- 1000, Iq/max I = 6.60"10 -15, N'-'ul = 

1.979, Nu2 -- 0.996; b) A, B, field and distribution of the temperature  over 

the core thickness; C, distribution of the local Nusselt  numbers  on the inner  

and outer  boundaries  of the core as a function of the latitude; the parameters:  

3000, 3.29, 2.924, 1.478; c) A, B, field and distribution of the tempera ture  

over the core thickness; C, distribution of the local Nusselt  numbers  on the 

inner  and outer  boundaries  as a function of the latitude; the parameters:  2300, 

0.78, 2.096, 1.060. 

are formed on the inner  and  outer  surfaces of the core. The  variation of the local Nusselt  numbers  has a "wave" 

character  with a symmet ry  relative to the angle O -- 90 ~ (Fig. 2b, C). The  flow pat tern in the layer  is similar to 

that in the above-considered modes (Fig. 2a, B). It is known [8 ] that  the value of the critical Rayleigh number  Ra* 

corresponding to the stability region is proportional to the first eigenvalue of the considered boundary-value  problem 

and can be found numerical ly  directly from its differential formulation. By virtue of this, numerical  calculations, 

which allowed the de terminat ion  of Ra* - 2000, were performed in order  to find the critical Rayleigh number .  The  

critical number  found should be assumed to represent  the lower level of the instability spectrum character izing the 

onset  of convection in the layer.  We note that for a plane horizontal layer  with solid boundaries  the minimum critical 

Rayleigh number  at the basic level of instability is Ra* = 1707.762 [6 ]. The  difference in the values of the critical 

numbers  is likely associated with the curvature of the considered region. 

Figure 2c presents  results of calculations for Ra = 2300 that indicate that at Ra > Ra* = 2000 a convective 

mechanism of energy t ransfer  begins to develop in the layer. The temperature  field a l ready differs from concentric 

circles (Fig. 2c, A), stratification of the temperature  over the core thickness is observed (Fig. 2c, B), and the change 
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Fig. 3. Ca lcu la t ed  f ie lds  ( b o u n d a r y  cond i t ions  of the  II k ind) :  a) A, 

temperature  field; B, s tream function; the parameters:  Ra = 1000, Q v / P e  = 

0,  IR/max I = 3 .30"10  -12, Nu 1 = 1 .061 ,  N---u 2 = 0 .534;  b) t e m p e r a t u r e  

distribution over the core thickness; the parameters:  1000, 1, 4 .10 .10  -12, 

1.061, 0.534; c) same; the parameters:  1000, 2, 1.43-10 -11, 0.994, 2.8828; 

d) A, B, field and distribution of the temperature  over the core thickness;  c, 

distribution of the local Nusselt  numbers on the inner  and outer  boundar ies  

of the core as a function of the latitude; the parameters:  4000, 0, 1.188, 1.079, 

0.544. 

in the local Nusselt  numbers  has a "wavy" character ,  but for this mode (unlike the results of Fig. 2b, B) the curves 

of Nut  and Nu2 do not intersect. 

Results of a calculation for the case of boundary  conditions of the II kind 

I =-1 Olrz=O 
F 1 

I 

are presented in Fig. 3, where it is seen that heat is t ransferred by heat conduction,  and therefore,  the local and 

averaged Nusselt  numbers  coincide. The  temperature  on the inner  boundary  of the core increases with increase in 

the internal  heat flux Qv (this is indicated by a comparison of the temperature  variation in the core in Figs. 3a, A, 

3b, and 3c). As in the case of boundary  conditions of the I kind, the temperature  field is represented by concentric 

circles, similar to those in Fig. 2a, A, that crowd at the inner boundary  for Qv = 0 (Nul > Nu2) and at the outer  

boundary  for Qv ~ 0 (Nu2 > Nu[) .  The rate of convection is small, and a two-vortex flow takes place in all cases 

(Fig. 3a, B). Compared to the results given in Fig. 2a, B, here the rate of convection is higher: ILIJmax ] - 10 -11. 

The  calculated averaged Nusselt numbers  satisfy relations (11), (12) with an absolute er ror  of 10 -2.  The  critical 

value of the Rayleigh number  Ra* N 3300 is found numerically for the given type of boundary  conditions and Qv = 
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Fig. 4. Ca lcu la ted  f ie lds  ( b o u n d a r y  condi t ions  of the  III k ind) :  a) A, 

t empera tu re  distr ibution over the core thickness; B, s t ream function; the 

parameters:  Iqamax I = 2.93" 10 -14, Nul = 0.686, N---u 2 = 1.509; b) A, B, field 

and  d is t r ibu t ion  of the t em p e ra tu r e  over the core  thickness;  C, s t ream 

function; D, distribution of the local Nusselt numbers  on the inner  and outer  

boundaries  of the core as a function of the latitude; the parameters:  2.12, 

3.762, 3.026; c) A, B, field and distribution of the temperature  over the core 

thickness; C, distribution of the local Nusselt numbers  on the inner  and outer  

boundaries  of the core as a function of the latitude; the parameters:  4.47, 

10.413, 6.378. 

0. The  values of the averaged Nusselt  numbers  are the same as for the version presented in Fig. 2a, the rate of 

convection is I~I/maxl ~ 10 -8,  and the flow becomes four-cell as in Fig. 2a, B. Figure 3d shows results for Qv = O, 

Ra = 4000 > Ra*. In the core a convective mechanism of energy t ransfer  dominates.  The  tempera ture  field differs 

from concentric circles (Fig. 3d, A), temperature  stratification takes place over the core thickness (Fig. 3d, B), and 

thermal boundary  layers form on the boundaries of the core. The  change in the local Nusselt numbers  (especially 

on the outer  boundary)  has a "wavy" character .  Four  vorlices with a rate I KUmaxl -- 1.188 occur in the layer  (as in 

Fig. 2a, B). The  numerical ly calculated averaged Nussselt  numbers  exceed the corresponding values calculated by 

formula (12) for the mode of heat conduction. 

Results obtained for boundary  conditions of the III kind on the surface of the core 

O0 I = - 9 [ r  I (Fig. 4, a), ~n] =-201Vl (Fig. 4, b); 
On i. 1 FI 

oO r~ = - 30 l q (Fig. 4, c) ; 
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Fig. 5. Calculated fields (boundary conditions of the I kind): a) A, B, field 

and  d is t r ibu t ion  of the  t e m p e r a t u r e  over the core  th ickness ;  C, s t ream 

function; D, distribution of the local Nusselt numbers  on the inner  and outer  

boundaries of the core as a function of the latitude; the parameters:  Q v / P e  = 

0, [ltlmaxl = 8.64, NUl = 2.740, N-'--~2 = 0.922; b) A, B, field and distribution 

of the temperature  over the core thickness; C, distr ibution of the local Nusselt  

numbers on the inner  and outer  boundaries of the core as a function of the 

latitude; the parameters:  1, 11.22, 1.624, 3.476. 

are shown in Fig. 4 (on the outer  boundary  of the core the temperature  was maintained equal to zero, O IF 2 = 0).  

Internal  heat sources ( Q v / P e  = 1) occur for all cases. 

For the results of Fig. 4a, energy in the layer  is t ransferred by heat  conduction.  Th e  tempera ture  field is 

concentric circles as in Fig. 2a, A. The  distribution of the temperature  over the thickness of the spherical layer  is 

presented in Fig. 4a, A. Two vortices of small intensity I tI/max [ - 10 -14 occur in the layer  (Fig. 4a, B). With increase 

in the amount  of heat supplied from below, heat in the layer  is t ransfer red  by convection, and rea r rangement  of 

the temperature  field, particularly pronounced in the region of O - 0 ,  90, 180 ~ takes place (Figs. 4b, A and 4c, 

A). On the inner  surface of the core the temperature  increases with increase in the Blot number  Bil, and the 

distribution of the tempera ture  over the layer  thickness acquires a form typical of convective t ransfer  of energy 

(Figs. 4b, B and 4c, B). For  the modes whose results are presented in Fig. 4b, c, an {ntense four-cell  flow occurs 

in the region studied (Fig. 4b, B). 

For the mode of Fig. 4a the local and averaged Nusselt numbers  coincide. Figure 4b, D (Bil = 2) shows 

the change in the local Nusselt  numbers,  which has a "wavy" character;  the curves of NUl and Nu2 differ  slightly 

but still do not intersect. A fur ther  increase in the power of the heat flux supplied from inside (Bil = 3, Fig. 4c) 

increases the rate of convection I gEma x I - 4, and rearrangement  of the tempera ture  field in the layer  persists,  thus 

leading to an increase in the Nusselt numbers.  The  curves of Nul ,  Nu2 (Fig. 4c, B) have common points charac-  

terized by equality of the local heat fluxes. The  ratio of the Nusselt numbers  calculated by formula (14) differs 

2-4-fold from the corresponding value calculated by relation (9) (for the results of Fig. 4b, c). This  fact confirms 

that heat in the core is t ransferred by convection, and heat conduction is small. 

Results for the ratio r'2/r ~ = 3/1 are presented in Figs. 5-7. Fields calculated for boundary  condit ions of 

the I kind are shown in Fig. 5. In the core, energy is t ransferred by convection; this can be judged by the change 

in the field characteristic of convective heat t ransfer  and the distribution of the temperature  (Fig. 5a, A, B and Fig. 
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Fig. 6. Calculated fields (boundary  conditions of the II kind): a) A, B, field 

a n d  d i s t r ibu t ion  of the t e m p e r a t u r e  over  the core th ickness ;  C, s t ream 

function; D, distribution of the local Nusselt  numbers  on the inner  and outer  

boundaries  of the core as a function of the latitude; the parameters:  Qv/Pe  = 

0, IqJrnax I = 4.67, Nul = 1.128, Nu2 = 0.377; b) A, B, field and distribution 

of the tempera ture  over the core thickness; C, distribution of the local Nusselt  

numbers  on the inner  and outer  boundaries of the core as a function of the 

latitude; the parameters:  1, 10.30, 1.116, 3.292. 

5b, A, B). The  intensi ty of motion and the heat t ransfer  increase when internal  sources occur in the core: I tt/ma x 

I - 8  at Qv = 0, I tttmaxl - 1 1  at Qv = 1. The  presence of internal  heat sources increases the gradients  of the 

tempera ture  at the outer  boundary  of the core (Fig. 5b, A) compared to the result  shown in Fig. 5a, A (Qv = 0),  

thus leading to an increase in the Nusselt  numbers  on the outer  surface. The  tempera ture  stratification over the 

layer  thickness becomes more pronounced for Qv = I (Fig. 5b, B). The  change in the Nusselt  numbers  has a "wavy" 

character  (Fig. 5a, D and Fig. 5b, C). A developed four-cell flow occurs for the modes considered (Fig. 5a, C),  

with the vortices in the region of (9 - 9 0  ~ being more intense than at the poles (9 - 0 ,  180 ~ Th e  critical Rayleigh 

number  for Qv = 0 obtained as a result  of a numerical experiment  amounts  to Ra* - 30.0. The  tempera ture  field for 

this mode is concentric circles. The  ent ire  flow region is occupied by two votrtices of low intensi ty I Wrnax I - 10 -4.  

The  local Nusselt  numbers  coincide with the averaged ones, and in this case NU] = 1.465, Nu 2 = 0.498. The  

calculation made  by Sherman,  which refines the value of the lower critical Rayleigh number  and is given in [6 ] for 

the part icular  case of a spherical cavity (not a layer  as in this paper) with an ideally conducting boundary ,  yielded 

the critical Rayleigh number  Ra* = 745.9. The  same paper ([6 ], Table  7) gives the critical Rayleigh n u m b e r  for a 

horizontal cyl inder  with an ideally conducting boundary  Ra* = 408.2. Table  4 of [6 ] drawn up for some variants 

of the boundary  conditions (unfortunately,  none suits for comparison with the results of the present  paper) presents  

critical values Ra* of the horizontal layer  that range from 120 to 816.4. An analysis and comparison of the order  

of the values of the critical Rayleigh numbers  Ra* calculated and given in [6 ] make it possible to verify that the 

numerical algorithm and the results obtained are correct. 

Tempera tu re  fields, s tream functions, and local Nusselt numbers  calculated for boundary  condit ions of the 

II kind 

c~-n0 ] = -  1, ~gIF 2 = 0 ,  
F 1 
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Fig. 7. Calculated fields (boundary conditions of the III kind): a) Q v / P e  = O, 

IltJmaxl -- 7 .30 ,  Nul = 2 .39 4 ,  Nu2 = 0 .815;  b) I ,  8 .65,  0 .254,  3 .018,  

respectively; A, B, field and distribution of the tempera ture  over the core 

thickness; C, stream function; D, distribution of the local Nusselt  numbers  

on the inner  and outer  boundaries of the core as a function of the latitude; c) 

A, B, field and distribution of the temperature  over the core thickness; C, 

distribution of the local Nusselt numbers  on the inner  and outer  boundar ies  

of the core as a function of the latitude; the parameters:  1, 9.46, 0.765, 3.200. 

are depicted in Fig. 6. As in the case of boundary  conditions of the I kind, natural-convect ion heat  t r ans fe r  with a 

temperature  profile characteristic of this mechanism of energy t ransfer  occurs here  (Fig. 6a, A, B and Fig. 6b, A, 

B). The  presence of an internal  heat source in the layer  increases tempera ture  stratification (Fig. 6b, B) compared  

to the result shown in Fig. 6a, B (Qv -- 0). The  local Nusselt  numbers  (Fig. 6a, D and Fig. 6b, C) on the inner  

boundary  of the core virtually do not change, taking on a "wavy" character  on the outer  surface. At Qv - 0 the local 

heat  flux NUl on the inner  boundary  (Fig. 6a, D) exceeds the local heat flux Nu2 on the outer  boundary .  The  

picture changes to the opposite at Qv = 1 (Fig. 6b, C): the local heat flux decreases on the inner  b o unda ry  and  

increases on the outer. In the liquid core in both the presence and the absence of an internal  heat  source  four 

vortices are formed: intense ones near  the equatorial plane and small at the poles (Fig. 6a, C). As in the  previous 

case, the critical Rayleigh number  is Ra* - 3 0 0  for Qv = 0. Th e  tempera ture  field is -concentric circles. T h e  flow 

pattern is represented by two vortices of low intensity IqJmax I - 1 0  -4. The  local heat fluxes coincide with the 

averaged: Nul -- 1.093 and Nu2 = 0.371. 

Figure 7 shows calculated fields for boundary conditions of the III kind on the outer  surfacc of the core: 

I 00 I = - (Fig. 7, c ) .  00 = - 201r  2 (Fig. 7, a and b) ,  ~ 11"2 
I 

301r  2 
On F2 
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On the inner surface of the core 0IQ = 0. 

For the results presented in Fig. 7a heat is transferred by convection. The temperature field and the 

temperature distribution over the core thickness, typical of convective heat transfer, are shown in Fig. 7a, A and 

B. As is seen from Fig. 7a, A, on the outer boundary of the core the temperature increases at the poles (O = 0, 

180 ~ and decreases at the equator (O -- 90~ Two vortices are formed in the liquid core (Fig. 7a, B); in the presence 

of internal heat sources (Fig. 7b and c) these vortices are transformed into four vortices (Fig. 7b, B). In this case 

the character of the variation of the fields of the temperature (Fig. 7b, A and Fig. 7c, A), the stream function (Fig. 

7b, C), and the Nusselt numbers (Fig. 7b, D and Fig. 7b, C) becomes different from the corresponding fields 
presented in Fig. 7a. 

The averaged Nusselt numbers for the modes given in Figs. 5a, B; 6a, C; 7a, D, obtained in the numerical 

solution of the problem, satisfy relation (11) with an absolute error of (2 -5 )  �9 10 -2, and for the results shown in 

Figs. 5b, B; 6b, B; 7b, D, and 7c, C the values calculated by formulas (10), (12), and (13) differ from the 

corresponding values obtained by relation (9). Hence it follows that developed convection takes place in the core; 

this is confirmed by the results presented in Figs. 5b, 6b, 7b, and 7c. The critical Rayleigh number Ra*-250  is 

calculated for Qv-- 0. In this case in the computational region two vortices with a maximum value of the stream 

function Iq/maxl -1 .057"  10 - t2  are formed, and the averaged Nusselt numbers take the values ~uul -- 1.348 and 

Nu2 -- 0.458. 

Thus, an analysis of the results obtained allows one to draw the following conclusions. 

1. The presence of internal heat sources increases the rate of heat transfer and motion of the liquid in the 

earth core. The gradients of the temperature on the outer boundary increase compared to the gradients on the 

inner surface (at Qv = 0 the tendency is opposite). 

2. At the ratio r'2/r ~ = 2/1 and Ra = 1000 heat in the layer is transferred by heat conduction. The intensity 

of convection is small. In the case of boundary conditions of the I kind a four-cell flow occurs in the layer, and this 

flow is transformed to two-cell in the case of heat supply from below. 

3. At the ratio r'2/r ~ = 3/1 and Ra = 1000 developed convection exists in the liquid core, and the flow 

pattern is represented by four vortices, except for the mode shown in Fig. 7a. 

4. For different versions of the boundary conditions and the thickness of the layers critical Rayleigh 

numbers are calculated, which allowed determination of the lower level characterizing the onset of convection in 

the spherical layer. 

5. The model suggested and the results obtained complement the available information on the motions of 

the liquid inside the earth core, and this can serve as a guiding line for the study of more realistic processes, which 

in all cases require bulky numerical calculations. 

N O T A T I O N  

PO, PO, uo, to, characteristic scales of pressure, density, velocity, and time; T, TI, T2, dimensional current 

temperature and temperature on the inner and outer surfaces of the core, respectively; fl, coefficient of thermal 

expansion; v, kinematic viscosity; q, density of the heat flux supplied to the inner boundary of the core; Nul,  Nu2, 

Nul, Nu2, local and averaged Nusselt numbers on the inner (F1) and outer (/'2) surfaces of the core, respectively; 

Ra*, critical Rayleigh number; n, normal to the surface of the core; R o, dimensionless outer radius of the core; 

q/max, maximum value of the stream function in the earth core. Subscripts: 0, undisturbed values; 1, inner surface; 

2, outer surface; liq, liquid; max, maximum value; v, volume. 
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